sexta-feira, 2 de dezembro de 2016

Física Animada

quinta-feira, 1 de dezembro de 2016

Caiu no vestibular

Ondas sonoras

Refração das ondas sonoras

Quando uma onda sonora muda seu meio de propagação, está ocorrendo uma refração. Na refração a frequência não se modifica, alterando-se apenas a velocidade de propagação e o comprimento de onda. Quando uma onda sonora passa de um meio para outro, onde a velocidade de propagação do som é maior, como por exemplo do ar para a água (Vsom(ar) <
Vsom(água)), o raio de onda sonora se afasta da normal à superfície no ponto de incidência, ao contrário do que acontece com um raio de luz.


Interferência das ondas sonoras


Vamos considerar que duas fontes sonoras F
1 e F2 estejam emitindo ondas sonoras em fase, de mesma amplitude e de mesma frequência. Conforme a diferença entre as distâncias F1P e F2P percorridas pelas ondas até atingir um ponto P do meio, poderemos ter aí uma interferência construtiva (resultando num som mais forte que os originais) ou destrutiva (resultando num som mais fraco que os originais).


Interferência construtiva: a diferença das distâncias percorridas pelas ondas for um múltiplo par de meio comprimento de onda:
  
F1PF2P = p.λ/2        (p = 0, 2, 4, 6, 8 ...)

Interferência destrutiva: a diferença das distâncias percorridas pelas ondas for um múltiplo ímpar de meio comprimento de onda: 


F1PF2P = i.λ/2        (i = 1, 3, 5, 7, 9 ...)
(Adaptado de  “Aulas de Física”, Editora Saraiva)


Se as fontes estivessem em oposição de fase, as condições de interferência construtiva e destrutiva seriam invertidas.


Neste caso, para interferência construtiva, teríamos:

F1PF2P = i.λ/2        (i = 1, 3, 5, 7, 9 ...)

E para interferência destrutiva:

F1PF2P = p.λ/2        (p = 0, 2, 4, 6, 8 ...)

Exercícios:


Exercício 1:


(PUC-SP)
Observe na tabela a velocidade do som ao se propagar por diferentes meios.


Suponha uma onda sonora propagando-se no ar com frequência de 300 Hz que, na sequência, penetre em um desses meios. Com base nisso, analise as afirmações a seguir. 


I. Ao passar do ar para a água, o período da onda sonora diminuirá. 


II. Ao passar do ar para a água, a frequência da onda aumentará na mesma proporção do aumento de sua velocidade. 


III. O comprimento da onda sonora propagando-se no ar será menor do que quando ela se propagar por qualquer  um dos outros meios apresentados na tabela.
 

Somente está correto o que se lê em:

a) I
b) II
c) III
d) I e II
e) II e III
 

Resolução:

(I) Incorreta.


(II) Incorreta. Na refração a  frequência e, portanto, o período não se alteram.

(III) Correta. De  v = λ.f,  sendo f constante,concluímos que v e λ são diretamente proporcionais. Sendo Var < Vágua < VAl, resulta: λar < λágua < λAl. Portanto, o comprimento da onda sonora propagando-se no ar será menor do que quando ela se propagar por qualquer  um dos outros meios apresentados na tabela.

Resposta: c


Exercício 2:


(UEPA)
Na busca por reservatórios de petróleo, os geofísicos investigam o interior da Terra, usando ondas mecânicas chamadas ondas sísmicas, que são geradas por explosões próximas à superfície e se propagam nas rochas, sofrendo reflexões e refrações nas várias camadas e estruturas subterrâneas. Quando os levantamentos sísmicos são feitos no mar, as ondas são geradas na água, se propagam até o fundo e penetram nas rochas, como representado na figura abaixo.


                                        
Sobre a propagação dessas ondas, analise as seguintes afirmações: 


I. Quando a onda passa da água para a rocha, sua frequência diminui. 


II. A propagação da onda mecânica na água é longitudinal, enquanto que nas rochas é tanto transversal quanto longitudinal.


III. Quando a onda passa da água para a rocha, seu comprimento de onda diminui. 


IV. A velocidade de propagação das ondas mecânicas é maior nas rochas do que na água.


Estão corretas somente as afirmativas: 

a) I e II
b) II e III
c) II e IV
d) I, II e III
e) I e IV   
 

Resolução:

I. Incorreta.
A frequência permanece constante.

II. Correta.
Nos fluidos, as ondas mecânicas são longitudinais e nos sólidos, têm duplo caráter - longitudinal e transversal.

III. Incorreta.
Ao passar do líquido (água) para o sólido (rocha), a velocidade aumenta, o mesmo ocorrendo com o comprimento de onda.

IV. Correta.
Nos sólidos, as ondas mecânicas têm velocidade maior. 

Resposta: c


Exercício 3:

(UFCE)
A figura mostra dois alto-falantes A e B separados por uma distância de 2,0xm. 


Os alto-falantes estão emitindo ondas sonoras em fase e de frequência 0,68 kHz. O ponto P mostrado na figura está a uma distância de 1,5 m do alto falante A e a uma distância x de pelo menos 1,5 m do alto-falante B. Supondo que a velocidade de propagação do som no ar é 340 m/s, a distância x mínima do alto-falante B ao ponto P para que este ponto seja um ponto nodal é:


a) 1,50 m          b) 1,75 m          c) 2,00 m          d) 2,50 m 

Resolução:


Ponto nodal significa que a interferência em P é destrutiva: como as ondas estão em fase, a condição para que isso ocorra é:

BP – AP =
i.λ/2   => x – 1,5 = i.v/2f  => x -1,5 = i.340/2.680 => 
x -1,5 = i/4 

A distância x mínima ocorre quando i = 1. Nestas condições, vem: 


x = 1,5 + 1/4 => x = 1,75 m

Resposta: b

Exercício 4:


(Unifesp)
Duas fontes, FA e FB, separadas por uma distância de 3,0 m, emitem, continuamente e em fase, ondas sonoras com comprimentos de onda iguais. Um detector de som é colocado em um ponto P, a uma distância de 4,0 m da fonte FA, como ilustrado na figura.


Embora o aparelho detector esteja funcionando bem, o sinal sonoro captado por ele em P, é muito mais fraco do que aquele emitido por uma única fonte. Pode-se dizer que

a) há interferência construtiva no ponto P e o comprimento de onda do som emitido pelas fontes é de 5,0 m.
b) há interferência destrutiva no ponto P e o comprimento de onda do som emitido pelas fontes é de 3,0 m.
c) há interferência construtiva no ponto P e o comprimento de onda do som emitido pelas fontes é de 4,0 m.
d) há interferência construtiva no ponto P e o comprimento de onda do som emitido pelas fontes é de 2,0 m.
e) há interferência destrutiva no ponto P e o comprimento de onda do som emitido pelas fontes é de 2,0 m.


Resolução:



Em P ocorre interferência destrutiva (sinal muito fraco). Como as ondas estão em fase, a condição para que isso ocorra é:

FBP - FAP = i.λ/2 => 5,0 - 4,0 = i.λ/2 => 1,0 = i.λ/2

Fazendo i = 1 => λ = 2,0 m

Resposta: e

Exercício 5:


(OBC-Olimpíada Brasileira de Ciências)
Frentes de onda passam de um meio 1 para outro meio 2,  ambos homogêneos, conforme indica a figura. Sabe-se que α = 53° e β = 37°.



Dados: sen 53° = 0,80; sen 37° = 0,60 


A velocidade de propagação da onda no meio 2 tem módulo 60 m/s e a distância entre duas frentes de ondas sucessivas no meio 1 é de 4,0 cm
 

a) Represente o raio incidente R que passa pelo ponto P, o correspondente raio refratado R’, a reta normal N pelo ponto de incidência na superfície de separação S e os valores dos ângulos de incidência e de refração.
 

b) Qual é o módulo da velocidade de propagação da onda no meio 1 e a distância entre duas frentes de ondas sucessivas no meio 2?
 

c) Determine a frequência da onda nos meios 1 e 2.
 

Resolução:
 

a) Sendo o raio de onda perpendicular à frente de onda, temos:


i é o ângulo complementar de 90° -
α. Logo, i = α = 53°
r é o ângulo complementar de 90° -
β. Logo, r = β = 37°
 

b) Pela Lei de Snell-Descartes:

sen 53°/sen 37° = v1/v2 => 0,80/0,60 = v1/60 => v1 = 80 m/s

De v1 = λ1.f1 e v2 = λ2.f2, e sendo f1 = f2 (a frequência é a mesma nos dois meios), vem:

v1/v2 = λ1/λ2 => 80/60 = 4,0/λ2 => λ2 = 3,0 cm.

c) Sendo
f1 = f2 = f, vem: v1 = λ1.f => 80 = 4,0.10-2.f => 
f = 2,0.103 Hz

Respostas:
a) esquema acima e i = 53° e r = 37°
b) 80 m/s e  3,0 cm                              
c) 2,0.1
03 Hz

quarta-feira, 30 de novembro de 2016

Cursos do Blog - Eletricidade

Em determinados fenômenos, a luz apresenta natureza corpuscular 
e em outros, natureza ondulatória. É o caráter dual da luz.

37ª aula
O caráter dual da luz

Borges e Nicolau

O cientista holandês Christian Huygens (1629-1695) apresentou a teoria ondulatória da luz, segundo a qual a luz se propaga através do espaço por meio de ondas.

O caráter ondulatório da luz ficou plenamente estabelecido quando o físico escocês John Clerk Maxwell (1831-1879) formulou a teoria ondulatória eletromagnética, considerando a luz uma onda eletromagnética.

A teoria ondulatória justifica muitos fenômenos que ocorrem com a luz, como é o caso da interferência e da difração.

No entanto, o efeito fotoelétrico explicado por Einstein considera a luz como um fluxo de “partículas” ou “corpúsculos”, denominados fótons.

Ao colidir com a superfície de um metal as "partículas de luz" (fótons)podem "arrancar" elétrons desta superfície. Esse fenômeno é chamado de efeito fotoelétrico, resultando da colisão entre duas “partículas”, o fóton e o elétron.

A luz apresenta, portanto, dupla natureza: ondulatória e corpuscular, comportando-se como onda eletromagnética ou como fluxo de partículas, conforme o fenômeno estudado.

É esse o caráter dual de luz.

Como a luz pode se comportar como onda ou como “partícula”, o físico francês Louis De Broglie (1892–1987) apresentou, em 1924, a seguinte hipótese: partículas também possuem propriedades ondulatórias.

O comprimento de onda associado à partícula, denominado comprimento de onda de De Broglie, é dado por:


A quantidade de movimento m.v evidencia o caráter corpuscular, enquanto o comprimento de onda λ evidencia o caráter ondulatório.

Em 1927 cientistas dos laboratórios Bell, nos Estados Unidos, constataram um fenômeno até então considerado exclusivamente ondulatório: a difração de elétrons. Conclui-se, então, que partículas também apresentam propriedades ondulatórias, o que confirma hipótese formulada por Louis De Broglie.

Exercícios básicos

Exercício 1:
Analise as proposições:

I) Em determinados fenômenos a luz apresenta natureza ondulatória e, em outros, corpuscular. É o caráter dual da luz.

II) Os fenômenos da interferência da luz, da difração e o efeito fotoelétrico são explicados pela natureza ondulatória da luz.

III) Partículas, como os elétrons, também possuem propriedades ondulatórias.

Tem-se:

a) só I) é correta;
b) só II) é correta;
c) só III) é correta;
d) só I) e III) são corretas;
e) I), II) e III) são corretas.

Resolução: clique aqui

Exercício 2:
Um elétron se desloca com velocidade 3,0.106 m/s. Determine o comprimento de onda de De Broglie associado ao elétron.

Dados: massa do elétron m = 9,11.10-31 kg
constante de Planck h = 6,63.10-34 J.s.

Resolução: clique aqui

Exercício 3:
Uma bola de futebol se desloca com velocidade 10 m/s. Calcule o comprimento de onda de De Broglie associado à bola.

Dados: massa da bola de futebol m = 400 g
constante de Planck h = 6,63.10-34 J.s.

Resolução: clique aqui

Exercício 4:
Retome os dois últimos exercícios anteriores. Por meio dos valores dos comprimentos de onda associados ao elétron e à bola de futebol, explique por que não se pode observar efeitos ondulatórios, como a difração, para objetos em escala macroscópica.

Resolução: clique aqui

Exercícios de Revisão

Revisão/Ex 1:
(UFRN)
Bárbara ficou encantada com a maneira de Natasha explicar a dualidade onda-partícula, apresentada nos textos de Física Moderna. Natasha fez uma analogia com o processo de percepção de imagens, apresentando uma explicação baseada numa figura muito utilizada pelos psicólogos da Gestalt. Seus esclarecimentos e a figura ilustrativa são reproduzidos a seguir:

Figura citada por Natasha, na qual dois perfis formam um cálice e vice-versa.



A minha imagem preferida sobre o comportamento dual da luz é o desenho de um cálice feito por dois perfis. Qual a realidade que percebemos na figura? Podemos ver um cálice ou dois perfis, dependendo de quem consideramos como figura e qual consideraremos como fundo, mas não podemos ver ambos simultaneamente. É um exemplo perfeito de realidade criada pelo observador, em que nós decidimos o que vamos observar. A luz se comporta de forma análoga, pois, dependendo do tipo de experiência ("fundo"), revela sua natureza de onda ou sua natureza de partícula, sempre escondendo uma quando a outra é mostrada.

Diante das explicações acima, é correto afirmar que Natasha estava ilustrando, com o comportamento da luz, o que os físicos chamam de princípio da:

a) incerteza de Heisenberg. 
b) complementaridade de Bohr. 
c) superposição.
d) relatividade.

Resolução: clique aqui

Revisão/Ex 2:
(URGS-RS)
O dualismo onda-partícula refere-se a características corpusculares presentes nas ondas luminosas e a características ondulatórias presentes no comportamento de partículas, tais como elétrons. A natureza nos mostra que características corpusculares e ondulatórias não são antagônicas mas, sim, complementares. Dentre os fenômenos listados, o único que não está relacionado com o dualismo onda-partícula é:

a) o efeito fotoelétrico.
b) a ionização de átomos pela incidência de luz.
c) a difração de elétrons.
d) o rompimento de ligações entre átomos pela incidência de luz.
e) propagação, no vácuo, de ondas de rádio de frequência média.

Resolução: clique aqui

Revisão/Ex 3:
(UFC-CE)
Associamos a uma partícula material o que chamamos de comprimento de onda de De Broglie.

A) Dê a expressão que relaciona o comprimento de onda de De Broglie com o momentum da partícula. 
B) Considere duas partículas com massas diferentes e mesma velocidade. Podemos associar a cada uma o mesmo comprimento de onda de De Broglie? Justifique.

Resolução: clique aqui

Revisão/Ex 4:
(Olimpíada Paulista de Física)
Cálcule o momento linear de um fóton de comprimento de onda 780 nm, típico de diodos laser empregados na leitura de CDs.
Dado: h = constante de Planck = 6,63.10-34 J.s

a) 2,5.10-27 J.s/m
b) 3,5.10-28 J.s/m
c) 4,5.10-26 J.s/m
d) 8,5.10-28 J.s/m
e) 9,5.10-29 J.s/m

Resolução: clique aqui
b
Desafio: 

Louis-Victor de Broglie

Louis-Victor de Broglie, físico francês, nasceu em 1892. Em 1909 completou o ensino secundário. Fez o curso de História na Sorbonne, pretendendo dedicar-se à carreira diplomática. Durante a I Guerra Mundial, de Broglie serviu ao exército. Após a guerra interessou-se pelo estudo de Matemática e Física, por influência de seu irmão, Maurice de Broglie. Estudou Mecânica Quântica e realizou pesquisas sobre os Raios-X. Em 1924, na Faculdade de Ciências da Universidade de Paris, defendeu sua tese de doutoramento desenvolvendo o tema “Pesquisas sobre a teoria quântica”. Neste trabalho apresenta a seguinte hipótese: partículas também possuem propriedades ondulatórias e consequentemente, apresentam um comprimento de onda característico, denominado comprimento de onda de de Broglie, dado por:xλx=xh/(m.v).


Louis-Victor de Broglie recebeu o Prêmio Nobel de Física de 1929 pelo trabalho sobre a dualidade onda-partícula.

Questão:

Calcule o comprimento de onda de de Broglie nas duas situações descritas abaixo:

a) para um elétron, deslocando-se com velocidade 40 m/s.


b) para uma pessoa de massa 60 kg, deslocando-se com velocidade 40 m/s.


c) em vista dos resultados obtidos, explique por que não podemos observar efeitos ondulatórios para objetos em escala macroscópica.
 

Dados: 
constante de Planck: h = 6,63.10-34 J.s; 
massa do elétron: me = 9,1.10-31 kg.

A resolução será publicada na próxima quarta-feira.

Resolução do desafio anterior:

Uma superfície de potássio é iluminada com luz de comprimento de onda 300 nm. A função trabalho do potássio é igual a 2,24 eV. Determine:

a) a energia cinética máxima para os fotoelétrons emitidos;
b) o comprimento de onda de corte.

Dados:

 
constante de Planck: 

h = 4,14.10-15 eV.s.
velocidade de propagação da radiação eletromagnética no vácuo:

c = 3,0.108 m/s


Resolução:

a) 
Equação fotoelétrica de Einstein:
 
EC = hf - Φ => Ec = h.(c/λ) - Φ =>
EC = 4,14.10-15.(3,0.108/300.10-9) - 2,24 => EC = 1,90 eV

b) 
c = λ0.f0 => c = λ0.Φ/h => λ0 = c.h/Φ => 
λ0 = (3,0.108m/s).(4,14.10-15eV)/2,24eV => λ0 ≅ 554 nm

Respostas: a) 1,90 eV; b) 554 nm

terça-feira, 29 de novembro de 2016

Cursos do Blog - Termologia, Óptica e Ondas

 Difração e Interferência

37ª aula
Fenômenos Ondulatórios
x
Borges e Nicolau
x
Já estudamos os fenômenos da reflexão e refração. Vamos analisar mais alguns fenômenos ondulatórios.
x
1. Superposição de pulsos
xxxxxxxxx
Considere dois pulsos que se propagam em sentidos opostos em uma corda tensa. Ocorre interferência ou superposição quando os dois pulsos atingem simultaneamente o mesmo ponto P da corda. Admita que os pulsos tenham mesma largura e amplitudes a1 e a2 e vamos analisar dois tipos particulares de interferência:
x
1°) Interferência construtiva: A amplitude do pulso resultante é a soma das amplitudes dos pulsos que se superpõem: a = a1 + a2

x
2º) Interferência destrutiva: A amplitude do pulso resultante é a diferença entre as amplitudes dos pulsos que se superpõem: a = a1 - a2

x
Após a superposição cada pulso continua sua propagação como se nada tivesse ocorrido. Observação: No caso em que a1 = a2, resulta a = 0 e a interferência destrutiva é total.
x
x
2. Ondas estacionárias
x
A superposição de ondas periódicas obedece os mesmos princípios da superposição de pulsos. As ondas estacionárias resultam da superposição de ondas periódicas iguais e que se propagam em sentidos opostos. Obtém-se ondas estacionárias em uma corda tensa pela superposição da onda periódica produzida numa extremidade com a onda refletida na extremidade fixa.


As ondas estacionárias apresentam: 

1º) Pontos que não vibram (amplitude Amínimo = 0). Nestes pontos, denominados nós, ocorrem interferências destrutivas. 

2º) Pontos que vibram com máxima amplitude (Amáximo = 2a). Nestes pontos, denominados ventres, ocorrem interferências construtivas. 

3º) Pontos que vibram entre os nós e os ventres com amplitudes entre 0 e 2a. Sendo λ o comprimento de onda das ondas que interferem, podemos concluir que a distância entre dois nós consecutivos é igual a λ/2; entre dois ventres consecutivos é também λ/2; já entre um nó e um ventre consecutivo é λ/4. A figura em linha contínua representada acima é a envoltória das posições da corda em vibração (linhas tracejadas). Quando a corda vibra muito rapidamente, percebemos apenas a envoltória. A formação ondas estacionárias não ocorrem somente com ondas propagando-se em cordas, mas também com ondas sonoras, luminosas, ondas que se propagam na superfície de um líquido etc. 

3. Difração 

É o fenômeno que consiste em uma onda contornar um obstáculo. Vamos, por exemplo, produzir uma perturbação batendo com uma régua na superfície da água tranquila de um tanque. Forma-se uma onda reta que ao atingir uma barreira dotada de uma fenda, espalha-se em todas as direções a partir da fenda. A explicação da difração é dada pelo Princípio de Huygens: cada ponto da frente de onda que atravessa a fenda comporta-se como uma fonte de ondas secundárias.


O fenômeno da difração é nítido quando o comprimento da fenda ou do obstáculo for menor ou da ordem do comprimento de onda da onda incidente. O comprimento de onda da luz varia de 4.10-7 m a 7.10-7 m enquanto que o do som no ar varia de 1,7 cm a 17 m. A difração da luz ocorre em obstáculos e fendas de dimensões muito pequenas. Por isso, o som se difrata mais do que a luz.

Recorde pela animação a superposição de pulsos. 
Clique aqui 

Exercícios básicos: 

Exercício 1:
Dois pulsos são produzidos em uma corda tensa conforme indica a figura. Faça um esquema mostrando o pulso resultante quando os pulsos parciais estiverem exatamente superpostos (crista com crista, vale com vale).

x
Resolução: clique aqui
x
Exercício 2:
A figura representa dois pulsos propagando-se num mesmo meio e em sentidos opostos. Eles superpõem-se no ponto P desse meio.  Qual é o deslocamento do ponto P no instante da superposição? Analise os casos a), b) e c).


x
Resolução: clique aqui
xxxxxxx
Exercício 3:
Uma corda tensa de 1,0 m de comprimento vibra com frequência de 10 Hz. A onda estacionária que se estabelece na corda tem o aspecto indicado na figura. Determine o comprimento de onda e a velocidade de propagação das ondas que se superpõem.
x
x
Resolução: clique aqui
xxxxxxx
Exercício 4:
Ondas estacionárias são produzidas numa corda tensa de comprimento 1,2 m e fixa em suas extremidades. Observa-se a formação de 7 nós no total. Qual é o comprimento de onda das ondas que se superpõem?
xxxxxxx
Resolução: clique aqui
xxxxxxx
Exercício 5:
Você conversa com seu vizinho embora um muro de 2,5 m de altura os separe. Isto é possível devido o fenômeno da:
a) reflexão;
b) refração;
c) difração;
d) superposição de ondas;
e) absorção das ondas pelo ar atmosférico.
xxxxx
Resolução: clique aqui

Exercícios de Revisão

Revisão/Ex 1:
(UFC-CE)
A figura I mostra, no instante t = 0, dois pulsos retangulares que se propagam em sentidos contrários, ao longo de uma corda horizontal esticada. A velocidade de cada pulso tem módulo igual a 2,0 cm/s. O pulso da esquerda tem 3,0 cm de largura e o da direita, 1,0 cm. Dentre as opções seguintes indique aquela que mostra o perfil da corda no instante t = 2,0 s.



Resolução: clique aqui

Revisão/Ex 2:
(UFRJ)
Uma onda na forma de um pulso senoidal tem altura máxima de 2,0 cm e se propaga para a direita com velocidade de 1,0.104 cm/s, num fio esticado e preso a uma parede fixa (figura 1). No instante considerado inicial, a frente de onda está a 50 cm da parede.



Determine o instante em que a superposição da onda incidente com a refletida tem a forma mostrada na figura 2, com altura máxima de 4,0 cm.

Resolução: clique aqui

Revisão/Ex 3:
(UFPB)
A superposição de ondas incidentes e refletidas com mesmas amplitudes, dá origem a uma figura de interferência denominada onda estacionária. Nesse sentido, considere uma situação em que uma corda tem uma das suas extremidades fixa a uma parede e a outra extremidade, conectada a um oscilador (fonte de vibração) que vibra com uma frequência de 80 Hz. A distância entre o vibrador e a parede é de 8,0 m.
Sabendo que as velocidades de propagação das ondas na corda são de 320 m/s, a onda estacionária na corda está melhor representada na figura:



Resolução: clique aqui

Revisão/Ex 4:
(UFTM)
Sílvia e Patrícia brincavam com uma corda quando perceberam que, prendendo uma das pontas num pequeno poste e agitando a outra ponta em um mesmo plano, faziam com que a corda oscilasse de forma que alguns de seus pontos permaneciam parados, ou seja, se estabelecia na corda uma onda estacionária.

A figura 1 mostra a configuração da corda quando Sílvia está brincando e a figura 2 mostra a configuração da mesma corda quando Patrícia está brincando.



Considerando-se iguais, nas duas situações, as velocidades de propagação das ondas na corda, e chamando de fS e fP as frequências com que Sílvia e Patrícia, respectivamente, estão fazendo a corda oscilar, pode-se afirmar corretamente que a relação fS / fP é igual a

a) 1,6.   
b) 1,2.   
c) 0,8.   
d) 0,6.   
e) 0,4. 

Resolução: clique aqui

Revisão/Ex 5:
(Vunesp-SP)
A figura a seguir representa esquematicamente as frentes de onda de uma onda reta na superfície da água, propagando-se da região 1 para a região 2. Essas regiões são idênticas e separadas por uma barreira com abertura.



A configuração das frentes de onda observada na região 2, que mostra o que aconteceu com a onda incidente ao passar pela abertura, caracteriza o fenômeno da:

a) absorção.
b) difração.
c) dispersão.
d) polarização. 
e) refração. 

Resolução: clique aqui
b
Desafio:

Dois pulsos, A e B, são produzidos em uma corda esticada, que tem uma extremidade fixada numa parede, conforme mostra a figura. Os pulsos se propagam com velocidade de 20 m/s.



Responda:

a) que tipo de superposição ocorre, após o pulso A ter sofrido reflexão na parede: construtiva ou destrutiva?
b) qual é a velocidade do pulso A no instante da superposição?


A resolução será publicada na próxima terça-feira

Resolução do desafio anterior:


Uma corda é feita de um material de densidade d = 5,0 kg/m3 e tem seção transversal de área A = 1,0.102 cm2. A corda está sendo tracionada, numa extremidade, por uma força de intensidade F = 2,0.10-3 N. A outra extremidade da corda efetua um MHS de frequência f = 4,0 Hz. Determine:

a) a densidade linear
μ da corda;
b) a velocidade v de propagação das ondas na corda;
c) o comprimento de onda
λ.

Resolução:

a)
Seja L o comprimento da corda e m sua massa. Seu volume é dado por: V = A.L, onde A é a área da seção transversal da corda. Podemos escrever:

d = m/V => d = m/A.L => d = μ/A => μ = d.A =>
μ = (5,0kg/m3).(1,0.102.10-4 m2) => μ = 5,0.10-2 kg/m

b)
v = √(F/μ) => v = (2,0.10-3N)/(5,0.10-2kg/m) =>
v = 2,0.10-1 m/s = 20 cm/s

c)
v = λ.f => 2,0.10-1m/s = λ.4,0Hz => λ = 5,0.10-2 m = 5,0 cm

Respostas:
a) 5,0.10-2 kg/m; b) 20 cm/s; c) 5,0 cm